skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bain, Nathan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract On 8 April 2024, a rare total solar eclipse (TSE) passed over western New York State (NYS), the first since 1925 and the last one until 2079. The NYS Mesonet (NYSM) consisting of 126 weather stations with 55 on the totality path provides unprecedented surface, profile, and flux data and camera images during the TSE. Here we use NYSM observations to characterize the TSE's impacts at the surface, in the planetary boundary layer (PBL), and on surface fluxes and CO2concentrations. The TSE‐induced peak surface cooling occurs 17 min after the totality and is 2.8°C on average with a maximum of 6.8°C. It results in night‐like surface inversion, calm winds, and reduced vertical motion and mixing, leading to the shallowing of the PBL and its moistening. Surface sensible, latent and ground heat fluxes all decrease whereas near‐surface CO2concentration rises as photosynthesis slows down. 
    more » « less